
XIOPerf: A Tool for Evaluating Network Protocols
John Bresnahan, Rajkumar Kettimuthu, and Ian Foster

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, Illinois 60439
Email: {bresnaha,kettimut,foster}@mcs.anl.gov

Abstract— The nature of Grid and distributed computing
implies communication between heterogeneous systems overa
wide and ever-changing variety of network environments. Often
large amounts of data are stored in remote locations and mustbe
transmitted in bulk. It is desirable to have the bulk data transfers
be as fast as possible; however, because of the dynamic networks
involved, it is often hard to predict what protocol will prov ide
the fastest service for a given situation. In this paper we present
XIOPerf, a network protocol testing and evaluation tool. XIOPerf
is a command line program written on top of Globus XIO with
a simple and well-defined interface to many different protocol
implementations. XIOPerf was created to give users a way to
quickly and easily experiment with an open-ended set of protocols
over real networks to determine which will best suit their needs.
We present a brief study of the overhead introduced by XIOPerf
and the performance when using a variety of protocols.

I. I NTRODUCTION

The nature of Grid [1]–[4] and distributed computing im-
plies an inherent need for communication. Resources that must
interact are distributed across many networks. An important
type of communication in these environments is bulk data
transfer. Often this means sending a file from one resource
to another, but it can also mean streaming large datasets from
a scientific instrument or from a computation. The important
aspect of bulk transfer is that it involves very large datasets.
Because of the size to be transferred, the protocols used must
be as efficient as possible. The quest to find the most efficient
transfer protocols is a large and ongoing area of research.

Many protocols [5]–[10] have been developed and continue
to evolve. Researchers strive to solve the problem of efficient
bulk data transfer in better and faster ways. The solutions are
usually targeted at solving a specific part of the problem. Some
protocols are designed for dedicated networks and are aimed
at the greedy acquisition of bandwidth; others are designedto
coexist with the traffic of multiple users in a shared network.
Sometimes the problem is looked at by the send rate, and other
times by how fast the user consumes data. In any case, the end
user typically has one simple question: What protocol is best
for my needs?

Answering that question can be a difficult task. Many factors
must be identified and considered. Every protocol has its

strengths; there is no single fastest protocol for every situation.
The best choice most often depends on the environment in
which the user’s application exists. The user must considerat
a minimum the following parameters:

Network type: Is it a dedicated link, or does some
quality of service guarantee that a portion of the
bandwidth is dedicated to the user?

Network activity: Is the network typically overuti-
lized or underutilized? How congested is it? How
much packet loss is expected? Does the protocol
need to be fair to other users?

Endpoints: Are the endpoint machines fast enough to
keep up with the network, or are they the bottleneck
in the pipeline?

Application: How does the application consume the
data? Does it write to disk? If so, what is the
disk speed? Are many memory copies made? How
will the applications consumption of data affect data
sending rates or data packet loss.

Unfortunately, determining these parameters is not easy.
Many of the factors are not known, and some, like network
activity, are always changing. Additionally, there are factors
too subtle to categorize that nevertheless can dramatically
affect performance. Even if a valid conclusion can be drawn
on paper, it may not be the best solution in practice because
of factors such as errors in (or liberties taken with) the actual
implementation of the protocol stack.

The most reliable way for a user to determine what protocol
is best is to actually try the various protocols. Clearly this
approach is not realistic. However, by defining standard inter-
faces for test applications to use and by creating a framework
for assisting protocol implementation, it may be feasible to try
a large number of them.

If the effort required to transform a proof-of-concept im-
plementation or a proprietary reference implementation into
a standard interface were minimized, protocol authors might
be willing to transform the implementation into the standard
framework. Even if they did not carry out the transformation,
application developers interested in experimenting with the



protocols might be motivated to spend the small amount of
effort required to morph the implementation into the stan-
dard framework. Once the implementation is accessible via
a standard interface, a common testing tool can accurately
evaluate protocols over real-world networks. This is exactly
what XIOPerf strives to accomplish.

XIOPerf is a command line tool that presents the user with
a familiar interface and set of options for performing bulk data
transfer over a network. The tool measures the performance
characteristics of a transfer and reports them to the user.
XIOPerf is written on top of Globus XIO [11] so it has
all of the dynamically loadable transport driver functionality,
allowing it to address the concerns we have outlined.

The remainder of this paper is organized as follows. We first
present related work. We then introduce the XIOPerf program,
its architecture, and how to use its basic functionality. We
next describe the wrapblock functionality, which makes driver
creation much easier; wrapblock has been added to Globus
XIO as part of this work. Finally, we evaluate the testing tool
by measuring the amount of overhead the abstraction layer
adds and the performance achieved using XIOPerf with real
protocols over real networks.

II. RELATED WORK

We briefly discuss here a few network measurement tools
and compare their fetures with those of XIOPerf.

A. IPerf

IPerf is the de facto standard for measuring and optimizing
bulk transfer performance. IPerf is a command line tool written
in C++ by NLANR [12]. IPerf allows a user to send messages
via either TCP [13] or UDP [14]. A user can choose either to
send a file and have the receiver write the file to disk or to
remove the disk from the equation and only send data to and
from memory in its process space. In addition to measuring
bandwidth, IPerf also measures jitter, an important aspectthat
XIOPerf does not yet address. IPerf has proved to be an
exceptionally useful tool. A typical IPerf session involves a
user running IPerf as a server on one side of the network and
as a client which connects to that server on the other. The
client then either sends a set amount of bytes or sends for a
set amount of time and completes by reporting the throughput
and other stats to the user. The main difference between IPerf
and XIOPerf is that while IPerf is limited to TCP and UDP,
XIOPerf is written on a framework that allows the user to plug
in arbitrary protocol implementations.

B. TTCP

Test TCP (TTCP) is a predecessor of IPerf and offers much
the same functionality. Both measure the performance of TCP
over a network. TTCP was originally created for the BSD

-i # sets the reporting interval. Every # seconds a throughput
report will be written to stdout.

-bs # set the length of the read/write buffer and thereby controls
the amount of data to post at one time.

-w # A TCP specific option. This sets the TCP window size and
maintains interface compatibility with IPerf

-n # Sets the number of bytes to transfer to #.
-F <path> filename for input if sending, and output if receiving.

By default transfers are memory to memory.
-S Be a sender
-R Be a receiver
-P # The number of parallel transfer to conduct at 1 time.
-s run in server mode
-c <contact>run in client mode and connect to the given contact string.
-D <name> The name of the next driver to add to the stack.

Fig. 1. Some command line options to XIOPerf.

operating system. Since that time, some ports of it have been
made to be more user friendly and to run on other operating
systems, such as Microsoft Windows.

C. Others

Many other network measurement and testing tools are
available [15]. While these tools are often used in conjunction
with Iperf, they are not aimed at end-to-end bandwidth testing
(one exception is pathrate). Moreover, none of these tools
provide a feature to test the performance of arbitrary and
extensible protocols on a network.

III. XIOP ERF

XIOPerf presents a similar interface to that of IPerf. It
is a command line tool with many of the same options
and behaviors. Just as with IPerf, XIOPerf runs as a server
on one side of the network and a client on the other. The
client connects to the server, and a bulk data transfer occurs
according to the parameters given. The user is given many
runtime options, including the amount of data to transfer,
which side sends and which receives, buffer sizes to use, and
whether to perform disk I/O. Some of the options can be found
in Figure 1.

The option that is most important, and that makes XIOPerf
unique among applications of its kind, is -D. This allows the
user to specify what protocol will drive the bulk transfer. The
protocol must be implemented as a Globus XIO driver (how
this is done will be discussed later). For example, if the user
wishes to measure the achieved bandwidth of the network
using TCP, he would run the XIOPerf on the server:

% globus-xioperf -s -D tcp
---------------------------------------------------------------
server listening on: localhost:50002
---------------------------------------------------------------

and on the client:

% globus-xioperf -D tcp -c localhost:50002
---------------------------------------------------------------
Connection established
---------------------------------------------------------------
Time exceeded. Terminating.

Time: 00:10.0009
Bytes sent: 5474.50 M
Write BW: 4379.19 m/s
Time: 00:10.0000



Fig. 2. XIOPerf architecture

To change the protocol used by XIOPerf to UDT [7], the
user need only change the string from “tcp” to “udt”. By
specifying the -D option multiple times, the user can build
a protocol stack over which the bulk transfer will occur.
For example, if the user wanted to measure how a TCP
transfer performed with GSI security, he would run the above
command with an addition “-D gsi” argument appended to the
command line.

IV. GLOBUS XIO

XIOPerf achieves the multiprotocol abstraction because
it is built on top of Globus XIO [11]. Globus XIO
is the Extensible Input Output component of the Globus
Toolkit(R) [16]. It is a framework that presents a single stan-
dard open/close/read/write interface to many different protocol
implementations. The protocol implementations are called
drivers. Creation of drivers is discussed later in this paper.
Once created, a driver can be dynamically loaded and stacked
by any Globus XIO application. XIOPerf takes full advantage
of this feature.

XIOPerf is a fairly simple application and gets most of its
power from the Globus XIO library. The diagram in Figure 2
illustrates how XIOPerf uses Globus XIO. XIOPerf is linked
against the Globus XIO library. It uses the Globus XIO API
for all of its IO needs. Globus XIO then takes care of finding
and loading the specified protocol drivers, establishing the
connections using that driver stack, and passing the data
buffers down the chain of drivers.

Since the drivers are loaded dynamically and adhere to a
standard interface, they do not have to be linked or com-
piled into the application. New drivers can be added to the
LD_LIBRARY_PATH at any time after the binary XIOPerf
installation has taken place. This is an important aspect

that allows for growth as new protocols are developed by
researchers.

V. GLOBUS XIO DRIVER CREATION

The success of XIOPerf hinges on the existence of Globus
XIO drivers for many bulk transfer protocols. We propose to
create these drivers in a couple of ways. The first is creating
drivers within the Globus XIO community. Many drivers have
been created in this way, including TCP, UDP, HTTP, File,
Mode E [17], UDT, Telnet, Queuing, Ordering, GSI, and
Multicast Transport [18]. All of these have been created by
using the native Globus XIO assistance APIs.

The second way we propose to scale up on driver production
is to allow the use of third-party libraries in Globus XIO
driver creation. We recognize that insisting the developers
to implement their protocols by using native Globus XIO
APIs would often force them to reinvent the wheel. Many
implementations already exist, and thus it would be beneficial
to create wrapper code to hook these libraries into the Globus
XIO driver interface.

To this end we introduce thewrapblock feature to Globus
XIO. This is a simple extension to the original Globus
XIO driver interface that allows for much easier creation of
drivers. The stock Globus XIO driver interface in written
on a asynchronous model. While this is the most scalable
and efficient model, it is also the most difficult to code
against. Further, many existing protocol implementationsdo
not have asynchronous APIs, and transforming them into an
asynchronous model can be time consuming. The wrapblock
functionality uses thread pooling and event callback techniques
to transform the asynchronous interface to a blocking interface.
This makes the task of creating a driver from an existing
library a trivial task.

As an example we look at theudt_ref driver. This driver
uses the wrapblock feature to glue the standard UDT [19]
reference implementation into a Globus XIO driver. We were
able to create this driver and use it in the XIOPerf program in
less than one day of work. To illustrate the ease in creation,
we present in Figure 3 the code required to implement write
functionality.

As is shown, the implementation requires a simple
pass-through call to the UDT library. The actual num-
ber of bytes written is passed back to Globus XIO
by reference in the nbytes parameter. The data structure
xio_l_udt_ref_handle_t is created in the open in-
terface call and is passed to all other interface calls as a
generic void * memory pointer. This allows the developer
to maintain connection state across operations. Similar code
is written to handle reading data. In the open and close
interface function, the developer initializes and cleans up
resources as would be expected. The code inside the driver



static
globus_result_t
globus_l_xio_udt_ref_write(

void * driver_specific_handle,
const globus_xio_iovec_t * iovec,
int iovec_count,
globus_size_t * nbytes)

{
globus_result_t result;
xio_l_udt_ref_handle_t * handle;
GlobusXIOName(globus_l_xio_udt_ref_write);

handle = (xio_l_udt_ref_handle_t *) driver_specific_handle;

*nbytes = (globus_size_t) UDT::send(
handle->sock, (char*)iovec[0].iov_base, iovec[0].iov_len, 0);

if(*nbytes < 0)
{

result = GlobusXIOUdtError("UDT::send failed");
goto error;

}

return GLOBUS_SUCCESS;
error:

return result;
}

Fig. 3. A sample wrapblock write interface implementation for UDT.

looks very much like a simple program using the third-party
API. There is little Globus XIO-specific code beyond the
interface function signatures. This approach makes creating
the driver easy for anyone already familiar with the UDT
reference library. Additionally, there are driver-specific hooks
that allow the user to directly interact with the driver in order
to provide it with optimization parameters. This interaction is
handled via cntl functions that look much like the standard
UNIX ioctl(). Further discussion on this can be found at
http://www.globus.org/toolkit/docs/4.0/common/xio/.

VI. EXPERIMENTS

The first set of experiments shows the overhead introduced
by the Globus XIO framework. Since we are adding an
abstraction layer between the application and the code that
does the actual work of shipping bits, there will necessarily be
some overhead. In our first set of results we recorded the time
before we registered an event in the application space and then
again when the event made its way to the driver’s interface
function. This is the exact interval from the time the user
requests an operation to the time it can begin to be delivered
by the protocol implementation. This measurement is referred
to as “down the stack.” We also measure the time “up the
stack.” This is the interval from immediately before the driver
signals it has completed its work to the time the application
is notified of the completion. These two measurements show
the exact overhead of the Globus XIO abstraction. We took
the average of many hundreds of read and write operations
and averaged them together both separately and together. We
ran the experiment on a UC TeraGrid [20] node with Dual 1.5
GHz Itanium processors and the Linux 2.4.21 kernel. Table
1 shows the results of the average overhead per operation in
milliseconds.

The results show that much more overhead is introduced up
the stack than down the stack. Since the code path for each

Fig. 4. Measurement of overhead with noop drivers

is entirely different, we see different times. The difference
between the two, however, is dramatic. This is due to some
convenience functionality in Globus XIO. Internally Globus
XIO does some event synchronization on the way up the stack
to ensure that the user of the library receives events in a
reasonable manner. For example, there is a barrier between
all data operation events and close events that guarantees that
when the close event is delivered, no other events will be
received, and thus resources can be cleaned up safely. Without
this, users would have to reference count their events or track
them in some other way that would unnecessarily complicate
the application.

TABLE I

OVERHEAD T IMES

Operation Up Down Both

Read 0.014 0.001 0.007
Write 0.015 0.001 0.008
Both 0.015 0.001 0.008

To show how the overhead scaled in the presence of many
drivers, we created the noop driver. This driver only forwards
requests down the stack and completion notifications up the
stack. It is intended to sit in the middle and do nothing but
add the overhead required for each additional driver. Many
of these noop drivers were added to the stack to show how
additional drivers affect the performance. We measured the
average overhead times up and down the stack, as before, but
with an increasing number of noop drivers. On the bottom of
the stack was the TCP driver, which did a bulk data transfer
across the local gigabit network of the UC TeraGrid. To show
how this overhead affects performance, we also measured the
achieved throughput of XIOPerf and IPerf. Figure 4 shows
this.

Overhead increased linearly with the addition of more
noop drivers, as expected. On average each driver adds 0.125



microseconds of overhead on our test system. Both reads and
writes add roughly the same amount of overhead. The achieved
bandwidth was unaffected by the introduced overhead. The
achieved throughput is steadily maintained at around 950
Mb/s. Since the ping time between the nodes in the transfer
is approximately 0.372 milliseconds, which is significantly
higher than all of the latency added by Globus XIO between
serial I/O operations, the delay of buffer delivery that is added
does not affect the throughput.

IPerf achieves a steady 990 Mb/s, which is better than
XIOPerf. The performance differences are likely due to the
asynchronous implementation of the TCP driver. Globus XIO
and IPerf are designed on different I/O models. IPerf is
written with blocking socket code and threads. Globus XIO is
designed for highly parallel and scalable systems so it is onan
asynchronous model. Hence, performance of Globus XIO with
applications displaying high levels of concurrent I/O should be
very steadily distributed across streams and ultimately achieve
the most scalable performance.

VII. D RIVER EXPERIMENTS

In this section, we discuss three common bulk transfer
protocols: TCP, UDT, and GridFTP (Mode E). To show the
effectiveness of XIOPerf when evaluating protocols, we have
compared the performance inside of XIOPerf against the
reference implementation for each of these protocols. Bulk
transfers of increasing sizes were run over the University of
Chicago (UC) TeraGrid LAN and on the wide area network
between UC TeraGrid nodes and TeraGrid nodes at the San
Diego Supercomputer Center. No disk I/O was done in this
study.

A. TCP

TCP [13], [21], [22] is a well-known and ubiquitous pro-
tocol. We will therefore touch only on a few aspects of it
here. TCP is targeted at the Internet at large. It has done an
impressive job of scaling as the Internet has gone through a
boom in terms of users as well as transfer rates. It provides
reliable and fair access to many users of a network. For its
targeted audience it is a very good protocol; however, for
lambda networks [23] and LFNs [24] it is not ideal.

TCP is window based. A window size constitutes a certain
number of bytes that can be in flight at a given time. In flight
refers to the bytes that the receiver has not yet acknowledged
as having received. Various algorithms determine how and
when the receiver acknowledges bytes received. The size of
this window and the latency on the network greatly affect the
rate at which data can flow. The ideal size of the window is
calculated by the bandwidth delay product:

bwdp = rtt ∗ bw
where rtt is the round trip time andbw is the available

bandwidth. The rtt is used because it takes into account the
time for a byte of payload to move from the sender to the
receiver and the time it takes for the acknowledgment to move
from the receiver to the sender. Bw reflects the number of bytes
that can be sent in a given time slice.

A user of TCP can select the maximum window size;
however, TCP scales up and down the percentage of the
window that it will use at any particular time. The algorithms
that TCP uses to decide on the current window size are well
documented elsewhere. Here we point out two aspects that
greatly affect its effectiveness in LFNs and lambda networks.

The first is TCP’s slow start. TCP starts with a very
small window size and exponentially increases the size as it
receives acknowledgments. Slow start may sound like a bit of
a misnomer when the growth is exponential, but it really does
make for a slow start. While linear growth would be much
worse, many round trips are needed before the window can
be fully open. In LFNs where the optimal window is large
and the time it takes to receive acknowledgments is large, it
may take the entire lifetime of the transfer or more to increase
to an optimal window size. This is a performance killer.

The next issue in TCP is how it handles congestion events.
Since TCP is designed to be multistream friendly, if it detects
that one stream is moving too fast and thus causing congestion,
it will decrease this stream’s window size. The problem enters
with how drastically the window size is decreased and how
slowly it is rebuilt. When TCP detects a congestion event, it
divides the window size by two. However, it will increase the
window only by the size of one segment, around 1500 bytes,
per acknowledgment received. When the ideal window size
is many megabytes this opproach obviously makes a dropped
packet very costly in terms of performance. This algorithm
is commonly referred to as additive increase multiplicative
decrease (AIMD).

The Globus XIO TCP driver is written on top of the standard
BSD socket interface available on all Unix platforms. The
actual protocol is implemented inside the kernel.

B. UDT

UDT is a UDP-based reliable protocol and. like TCP, is
targeted at shared networks. However, UDTs main audience
is underused networks with a small number of UDT streams.
It is designed to coexist fairly with TCP streams but also
to achieve high throughput faster and have less of a penalty
for a congestion event. Beyond being a protocol, UDT is a
framework that allows users to plug in their own congestion
control algorithms.

Like TCP, UDT uses a window and an AIMD strategy for
congestion control. The difference is that UDT determines
the factors to use by a much more sophisticated strategy.
Specifically, it sends two probe packets for every sixteen data



packets. These probe packets are sent sequentially withoutany
regard for rate limiting. Based on the time between arrivals, a
bandwidth estimate is made, which is then used to calculate
the additive increase factor.

The decrease factor is much less severe than TCP. UDT
decreases the window size only when a NAK is received.
This situation occurs less often then a TCP congestion event.
Additionally, when the NAK is received, instead of cutting the
window in half, the window is set to 8/9 of its previous size.
This is still a multiplicative decrease, and a backoff of the
sending rate, but it is a much less severe penalty. The increase
factor is determined by looking at the greater of the following:

• 10
d(log10((B−C)∗MTU))e ∗ β/MTU

• 1/MTU

where B is the bandwidth estimate, C is the current sending
rate, β is a constant value of 0.0000015 and MTU is the
maximum transmission unit for the network. The UDT driver
is implemented by using the previously discussed wrapblock
feature newly added to Globus XIO. We have wrapped the
reference implementation provided by Grossman et al. [19]
into a Globus XIO driver.

C. GridFTP

GridFTP [25] is a protocol for file transfers. GridFTP is
commonly misunderstood to be a single protocol for bulk
transfer. This is not exactly true. It is not itself a single protocol
but, rather, is a collection of protocols. Much like the standard
well-known FTP protocol documented in RFC959, GridFTP
has two channels. The data channel is the pathway through
which the bulk data transfer flows. The control channel spec-
ification allows users to execute shell-like commands such as
mkdir, rename, and delete and to request files for transfer. The
control channel protocol is specified on top of telnet and TCP.
This protocol is not optimized for efficiency and thus is not
intended to be fast. It is simply a reliable means of establishing
data channels pathways.

The protocol used for the data channel is open ended.
The authors of RFC959 had much foresight in realizing that
different users may prefer a different means of transferring
the bulk data. To allow for this, they defined the data channel
protocol to be a Mode and then created a control channel
command that allows the client to select what mode to use.
This gives the user the ability to decide what bulk protocol to
use to send a file at transfer time.

The commonly used mode in GridFTP is called Mode E.
It is a parallel TCP protocol. A set of TCP connections is
established, and the data is transferred equally across them.
While the transfer is in progress, TCP streams can be added
or removed. When the transfer completes, the established TCP
connections can be cached for use with a later transfer.

Categorically, parallel TCP protocols all have the same
advantages and disadvantages. The differences are largely
based on implementation. GridFTP is different in that it does
not stop at using parallel streams for endpoint-to-endpoint
performance gain. It has extended the concept of parallel TCP
streams so that many different endpoints can participate in
a single, coordinated transfer in a M to N fashion. This has
the obvious advantage of summing the collective bandwidth
available at all endpoint pairs.

The general advantage of using multiple streams is that it
proportionally reduces the disadvantages associated withTCP
by the number of parallel streams. For clarity we will refer
to the number of parallel streams as P. The bandwidth delay
product for each stream in a transfer is bw*latency/P, which
is 1/P smaller than the optimal window size of a single TCP
stream. Therefore each window can be fully opened faster.
And since all streams are used in parallel the slow start of
TCP is theoretically reduced by 1/P. Similarly, the penalty
associated with a congestion event is also reduced by 1/P.
As stated above, TCP is most efficient when a properly set
window is fully open. When a congestion event occurs, the
window is closed and slowly rebuilt. This process constitutes
a large penalty in a bulk transfer. If many streams are used,
however, a single congestion event affects only one stream and
therefore affects only 1/P of the overall transfer.

The target network of Mode E is similar to that of UDT. It
is aimed at underused networks. If too many parallel streams
are used the protocol becomes unfair to other streams and can
potentially choke itself by causing too may congestion events.

The Mode E driver was written by using the native Globus
XIO driver API. This is the best solution for creating scal-
able and efficient protocol drivers. Globus XIO provides an
assistance API for creating drivers in this way.

D. Results

The results of the performance evaluation are shown in
Figures 5 through 10. We measured the achieved throughput
of each protocol with increasing bulk transfer length. The
important difference between the two networks over which
we tested is the latency between endpoints. On the LAN
study the latency was about 0.372 microseconds and the
WAN was about 58.140 milliseconds. The networks were not
congested so some of the aspects of each protocol were not
tested. Along with the throughput results, each graph also
shows the percentage by which the reference implementation
outperformed the XIOPerf implementation. In all cases the
result is less than 5%, which means that XIOPerf was always
within 95% of achieved throughput. As we stated above, each
of the drivers studied here was written on a different model.
The variance in percentage throughput difference is accounted
for by the differences in the implementations.



Fig. 5. Comparison of Mode E protocol’s performance on a local area
network as observed with XIOPerf and the actual run of the Reference
implementation of the protocol.

Fig. 6. Comparison of Mode E protocol’s performance on a widearea
network as observed with XIOPerf and the actual run of the Reference
implementation of the protocol.

Fig. 7. Comparison of TCP protocol’s performance on a local area network
as observed with XIOPerf and Iperf.

Fig. 8. Comparison of TCP protocol’s performance on a wide area network
as observed with XIOPerf and Iperf.

Fig. 9. Comparison of UDT protocol’s performance on a local area network
as observed with XIOPerf and the actual run of the reference implementation
of the protocol.

Fig. 10. Comparison of UDT protocol’s performance on a wide area network
as observed with XIOPerf and the actual run of the reference implementation
of the protocol.



Mode E has the lowest percentage. It is written by using the
native Globus XIO driver library and therefore is used in the
most efficient way possible. TCP has the highest percentage
difference in throughput. We believe this to be an anomaly due
to how efficiently IPerf uses the kernel’s TCP stack. While we
hope to increase the throughput of the Globus XIO TCP driver,
IPerf is strictly a performance measurement tool, and XIOPerf
is much closer to a real application. Therefore IPerf has an
advantage in achieving very high throughput, but XIOPerf is
likely to be closer to what an actual application will achieve,
especially if the application uses Globus XIO,

In future work we hope to decrease the performance gaps
substantially, especially in the case of TCP. Even with this
performance gap, however, XIOPerf is an useful tool for
determining which protocol is best to use. Since the achieved
throughput inside of XIOPerf is very close to that of the
reference implementation all protocols are on level groundand
can be fairly compared. As part of the comparison, the way
the driver was created and the results shown here can also be
taken into account.

ACKNOWLEDGMENTS

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract W-31-
109-ENG-38.

APPENDIX

GLOBUS XIO EXAMPLE.C

#include "globus_xio.h"

int
main(

int argc,
char * argv[])

{
globus_result_t res;
char * driver_name;
globus_xio_driver_t driver;
globus_xio_stack_t stack;
globus_xio_handle_t handle;
globus_size_t nbytes;
char * contact_string = NULL;
char buf[256];

contact_string = argv[1];
driver_name = argv[2];

globus_module_activate(GLOBUS_XIO_MODULE);
res = globus_xio_driver_load(

driver_name,
&driver);

assert(res == GLOBUS_SUCCESS);

res = globus_xio_stack_init(&stack, NULL);
assert(res == GLOBUS_SUCCESS);
res = globus_xio_stack_push_driver(stack, driver);
assert(res == GLOBUS_SUCCESS);

res = globus_xio_handle_create(&handle, stack);
assert(res == GLOBUS_SUCCESS);

res = globus_xio_open(handle, contact_string, NULL);
assert(res == GLOBUS_SUCCESS);

do
{

res = globus_xio_read(
handle, buf, sizeof(buf) - 1, 1, &nbytes, NULL);

if(nbytes > 0)
{

buf[nbytes] = ’\0’;
fprintf(stderr, "%s", buf);

}
} while(res == GLOBUS_SUCCESS);

globus_xio_close(handle, NULL);

globus_module_deactivate(GLOBUS_XIO_MODULE);

return 0;
}

Fig. 11. Example GlobusXIO user program



REFERENCES

[1] I. Foster, “The Anatomy of the Grid: Enabling scalable virtual organi-
zations,” in Proceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing. Springer-Verlag, 2001, pp. 1–4.

[2] I. Foster and C. Kesselman, “Computational Grids,” inSelected Papers
and Invited Talks from the 4th International Conference on Vector and
Parallel Processing. Springer-Verlag, 2001, pp. 3–37.

[3] ——, “Computational Grids: On-Demand Computing in Science and
Engineering,”Computers in Physics, vol. 12, no. 2, p. 109, 1998.

[4] ——, “Computational grids,”The Grid: Blueprint for a New Computing
Infrastructure, pp. 15–51, 1999.

[5] D. Katabi, M. Handley, and C. Rohrs, “Congestion controlfor high
bandwidth-delay product networks,” inProceedings of the 2002 Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications. ACM Press, 2002, pp. 89–102.

[6] W. T. Strayer, M. Lewis, and R. E. Cline, Jr., “XTP
as a transport protocol for distributed parallel processing,” in
Proceedings of the USENIX Symposium on High-Speed Networking,
oakland, CA, August 1994, pp. 91–101. [Online]. Available:
citeseer.nj.nec.com/strayer94xtp.html

[7] Y. Gu and R. Grossman, “UDT (UDP based Data Transfer Protocol):
An application level transport protocol for Grid computing,” in Second
International Workshop on Protocols for Fast Long-Distance Networks,
Argonne, IL, 2004.

[8] H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, and Q. Zhang,
“Simple available bandwidth utilization library for high-speed wide area
networks,”Journal of Supercomputing, 2004.

[9] D. Clark, M. Lambert, and L. Zhang, “NETBLT: A Bulk Data Transfer
Protocol. IETF, RFC 998,” March 1987.

[10] E. He, J. Leigh, O. Yu, and T. A. DeFanti, “Reliable BlastUDP:
Predictable high performance bulk data transfer,” inCLUSTER ’02: Pro-
ceedings of the IEEE International Conference on Cluster Computing.
Washington, D.C.: IEEE Computer Society, 2002, p. 317.

[11] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link, “The Globus eX-
tensible Input/Output System (XIO): A protocol Independent IO system
for the Grid,” in IPDPS ’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop
4. Washington, DC, USA: IEEE Computer Society, 2005, p. 179.1.

[12] “Iperf web page,”http://dast.nlanr.net/Projects/Iperf/.
[13] J. Postel, “RFC 793: Transmission Control Protocol,” 1981.
[14] ——, “RFC 768: User Datagram Protocol,” 1980.
[15] “Network measurement and testing tools,”

http://dsd.lbl.gov/TCP-tuning/tools.html.
[16] B. Sotomayor and L. Childers, “Globus Toolkit 4: Programming Java

services,” 2005.
[17] W. Allcock, “Protocol Extensions to FTP for the Grid,” 2003.
[18] K. Jeacle and J. Crowcroft, “A multicast transport driver for Globus

XIO,” in WETICE ’05: Proceedings of the 14th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprise. Washington, DC, USA: IEEE Computer Society, 2005, pp.
284–289.

[19] R. L. Grossman, Y. Gu, X. Hong, A. Antony, J. Blom, F. Dijkstra, and
C. de Laat, “Teraflows over Gigabit WANs with UDT,”Future Gener.
Comput. Syst., vol. 21, no. 4, pp. 501–513, 2005.

[20] “TeraGrid web page,”http://www.teragrid.org.
[21] V. Jacobson, R. Braden, and D. Borman, “RFC 1323: TCP Extensions

for High Performance,” 1992.
[22] M. Allman, V. Paxson, and W. Stevens, “RFC 2581: TCP Congestion

Control,” 1999.
[23] X. R. Wu, “Evaluation of rate-based transport protocols for lambda-

grids.” [Online]. Available: citeseer.ist.psu.edu/698560.html
[24] K. Kumazoe, Y. Hori, M. Tsuru, and Y. Oie, “Transport protocols for

fast long-distance networks: comparison of their performances in JGN,”
saint-w, vol. 00, p. 645, 2004.

[25] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, “The Globus
striped GridFTP framework and server,” inSC ’05: Proceedings of the
2005 ACM/IEEE conference on Supercomputing. Washington, D.C.:
IEEE Computer Society, 2005, p. 54.


